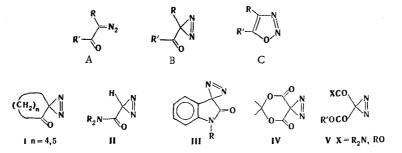
- 14. Z. I. Zelikman, T. P. Kosulina, and V. G. Kul'nevich, Khim. Geterotsikl. Soedin., No. 2, 169 (1976).
- 15. D. A. Tomalia and J. N. Paige, J. Org. Chem., <u>38</u>, 422 (1973).
- 16. C. U. Pittman, S. P. McManus, and J. W. Larsen, Chem. Rev., 72, 357 (1972).
- 17. N. V. Dormidontova, M. I. Ustavshchikov, and M. I. Farberov, Zh. Prikl. Khim., <u>42</u>, 921 (1969).
- 18. S. A. Harris, G. A. Boyack, and K. Folkers, J. Am. Chem. Soc., <u>63</u>, 2662 (1941).
- E. N. Muzinov, E. N. Zil'berman, S. M. Danov, R. V. Efremov, and R. A. Navolokina, Khim. Elementoorg. Soedin., No. 4, 72 (1976).
- I. Denesh, Titration in Nonaqueous Media [Russian translation], Mir, Moscow (1971), p. 144.


DERIVATIVES OF DIAZIRINE-3, 3-DICARBOXYLIC ACID*

UDC 547.717

G. V. Shustov, N. B. Tavakalyan, A. P. Pleshkova, and R. G. Kostyanovskii

The amidation and alkaline hydrolysis of diazirine-3,3-dicarboxylic acid esters, which proceed with retention of the diazirine ring, were studied. The higher stability of diazirine-3,3-dicarboxylic acid esters as compared with their spirocyclic analogs is explained by the conformational lability of the C=Ogroups. The UV and mass spectra of the diazirines are discussed.

The synthesis and properties of α -diazo carbonyl compounds A have been studied extensively [2], while their valence isomers, viz., diazirines B, are represented by only a few examples.[†] These representatives are α -cyclodiazo ketones I, which were obtained by oxidation of the corresponding alcohols [4, 5], and products of photoisomerization of linear α -diazo carbonyl compounds, viz., cyclodiazoacetic acid amides II [6, 7], 3-cyclodiazo-2,3-dihydroindol-2-ones III [8], and isopropylidene cyclodiazomalonate (IV) [9].

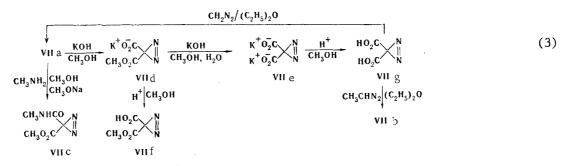
However, the photochemical synthesis of diazirines is not of preparative value, since the yields in this case are 20-30% [6, 7, 9], and attempts to realize the photocyclization of the diester and amidoester of diazomalonic acid were unsuccessful; this was explained by the spontaneous retrotransformation of diazirines V because of the steric effect of two carbonyl substituents [6, 7], in analogy with 3,3-diphenyldiazirine [10].

We have previously shown that cyclodiazomalonic esters (diazirine-3,3-dicarboxylic acid esters) VIIa, b are readily obtained from O-tosyloximes VIa, b and alkoxyamines or by oxidation of diaziridine-3,3-dicarboxylic acid ester VIII [1, 11]:

*See [1] for our preliminary communication. +A third valence isomer, viz., 1,2,3-oxadiazole C, has been found only in the gas phase by FES in the case of o-quinone diazide [3].

Institute of Chemical Physics, Academy of Sciences of the USSR, Moscow 117334. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 901-906, July, 1981. Original article submitted July 28, 1980.

VI, VII a $R = CH_3$; b $R = C_2H_5$


Esters VIIa, b are colorless substances that are stable at $0^{\circ}C$. Thus the explanation for the unsuccessful attempts to synthesize diazirines V by means of purely steric reasons [6, 7] can be regarded as erroneous.

In contrast to linear isomers A [2, pp. 34, 64], the presence of an α -carbonyl group in diazirines B should lead to a decrease in stability because of the possibility of π,σ "pseudoconjugation" [8]:

 $\underbrace{ \bigvee_{\mathbf{v}h}^{\mathbf{N}} \xrightarrow{\Delta}_{\mathbf{v}h}^{\mathbf{N}=\mathbf{N}^{+}}}_{\mathbf{v}h} \underbrace{ \bigvee_{\mathbf{v}h}^{\mathbf{N}=\mathbf{N}^{+}}}_{\mathbf{O}^{-}}$ (2)

According to molecular models, the most effective interaction of the antibonding π^* orbitals of the C=0 group with the bonding σ orbital of the C-N bond of the diazirine ring is observed in spirocyclic diazirines I, III, and IV with restricted conformational mobility of the C=0 group (Fig. 1) (compare with the sprio activation in [12, 13]). In addition, distortion of the C-C(N₂)-C bond angle promotes destabilization of spirans, since, according to the data from microwave spectroscopy [14], the exocyclic bond angle in diazirines is \sim 117°, while the corresponding angle in, for example, cyclohexanone [15] is \sim 109°.

In fact, spirocyclic diazirines III and IV are considerably less stable than their analogs II and VIIa, b with conformationally labile C=0 groups. Thus ester VIIa in the crystalline state remains unchanged for 1 month at 20°C, cycloacylal IV under the same conditions undergoes isomerization after a few weeks with opening of the diazirine ring [9], amides II [6, 7] undergo distillation at temperatures $\geq 100^{\circ}$ C, and spiran III is converted to a linear isomer at 20°C ($\tau_{1/2} \sim 7$ h) [8].

The low stability $(\tau_1/2 = 1 \text{ h} \text{ at } 20^{\circ}\text{C})$ and the high sensitivity to acids of spirocyclic diazirine I (n = 4) can be explained by the unfavorable stereoelectronic situation (Fig. 1) [4, 5]. In the latter case an interaction of the $\sigma_{\text{C-N}}$ orbital of the diazirine ring with the vacant p orbital of the carbonium ion formed by protonation of the carbonyl group is realized. At the same time, the conformational lability of the C=0 groups and the possibility of competitive conjugation with the unshared electron pair of the oxygen atom of the MeO group ensures the stability of esters VIIa, b in a strongly acidic medium. For example, ester VIIa does not undergo appreciable decomposition in CF₃COOH after 2 h at 20°C (monitoring by PMR spectroscopy). We were therefore able to realize the transformations of ester VIIa presented in Scheme (3), including the liberation of free diazirine-3,3-dicarboxylic acid (VIIg).

The amidation and alkaline hydrolysis of ester VIIa under mild conditions (from 0 to -5° C) lead to monoamide VIIc and salts VIId, e (Table 1). Amide VIIc is stable at 0°C, and the dipotassium salt in the crystalline state remains unchanged after 2 months at 20°C, while the monopotassium salt undergoes decomposition after a few hours at 0°C. Both salts VIId, e explode when they are ground.

Acids VIIf, g (Table 1) are colorless crystalline substances that are stable at 0°C, and monoacid VIIf is readily sublimed *in vacuo* at 20°C (1 mm). The structure of diazirine-3,3-dicarboxylic acid (VIIg) was confirmed by conversion to esters VIIa, b via reactions with diazoalkanes (Scheme 3).

TABLE 1. Derivatives of Diazirine-3, 3-dicarb

Com-	mp °C	IR spectrum	PMR spectrum		Mass spectrum (30 eV), m/e (relative intensity, %)	
pound		cm -1	δ ,ppm(J,Hz) solvent			
VIIa	50-51 (dec.)	1730, 1750	3,21s	C_6D_6	$158 (M^+, 0.24), 130 (2), 127 (1), 99 (4), 59$	98 a
VIIb	_ b	1740, 1760	0,78 t, 3,75 q (7,0)	C_6D_6		98 c
VIIc	25—27	1740, 1680	2,37 d (4,5) 2,95 s	C_6D_6	(100), 28 (27) $157 (M^+, 40), 99 (3), 98$ (1), 58 (31), 42 (100), 28 (50) 15 (22)	92
VIId VIIe	104 ^d 195 d	1610	4,02.s	D_2O	28 (50), 15 (33) 	90 79
VIIf	4951(dec.)	1720	3,19s, 10,49s	C ₆ D ₆	144 $(M^+, 0,02)$, 127 (1), 116 (2), 113 (1), 99 (1), 85 (5), 59 (8), 45	1
VIIg	76d		9,37 s	(CD ₃) ₂ CO	(100), 28 (18), 15 (25)	90

^aFrom diacid VIIg and CH₂N₂. ^bFrom diacid VIIg and MeCHN₂. ^cThis compound had nD²⁰ 1.4248. ^dDecomposition temperature.

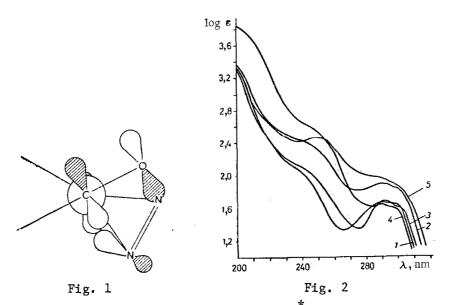


Fig. 1. Overlapping of the σ_{C-N} and $\pi^*_{C=0}$ orbitals in spirocyclic diazirines.

Fig. 2. UV spectra of dimethyl ester VIa (1), diethyl ester VIIb (2), monoamide VIIc (3), monoacid VIIf (4), and diacid VIIg (5) in methanol.

A shoulder at 240-250 nm and a pronounced absorption band at 290-300 nm (Fig. 2), which, in contrast to the long-wave band of 3-alkyldiazirines (for example, see [16, 17]), does not have a fine structure and is shifted to the short-wave region, evidently because of the effect of electronegative substituents, since in the case of monoamide VIIc the hypsochromic shift is somewhat weaker (Fig. 2 and Table 2), are observed in the UV spectra of diazirines VIIa-c, f, g. There is no unified opinion with respect to the problem of the assignment of the long-wave band in the UV spectra of diazirines. According to calculations by the extended Hückel method, the $\pi \rightarrow \pi^*$ and $\sigma \rightarrow \pi^*$ transitions and one of the two $n \rightarrow \pi^*$ transitions are allowed for diazirine [18]. On the basis of this, the observed absorption at 320-360 nm was assigned to the $\sigma \rightarrow \pi^*$ transition. However, according to *ab initio* [19, 20] and MINDO2 [20, 21] calculations, the upper occupied orbital in the diazirine molecule is the antisymmetrical nonbonding p orbital. The data from the photoelectronic spectra are in

TABLE 2. UV Spectra of Diazirines and cis-Azoalkane

R	R R'		$\lambda_{max of the long-wave band, nm}$	$\log \epsilon$	Literature
(CF	I ₂)5	Pentane CHCl ₃ MeOH H ₂ O	350 355 355 355 357		[16]
(CH₂)₅		Hexane MeCN MeOH H ₂ O	366 352 352 352 352	. 2,18	[17]
MeNHCO	Н	EtOH	311	1,97	[6]
MeO ₂ C	MeO₂C	Pentane MeCN MeOH H ₂ O	289 289 289 289 288	1,63 1,83 1,66 1,94	This paper
EtO ₂ C	EtO₂C	Pentane MeOH	289 289	1,89 1,89	This paper
MeNHCO	MeO2C	MeOH	292	1,67	33 77
CO ₂ -K+	MeO2C	MeOH	300 ^a	1,59	17 77
CO ₂ -K+	CO ₂ -K+	H ₂ O	298 ^a	1,94	,, ,,
HO ₂ C	MeO2C	MeOH	289	1,63	,, ,,
HO ₂ C	HO ₂ C	MeOH	286 ^{.a}	1,93	,, ,,
X	Z	Hexane MeCN MeOH H ₂ O	327 327 323 320	2,28	[17]

aShoulder.

agreement with the latter [20, 22]. The results of studies of the UV spectra of diazirines are contradictory. A red shift of the band at 350 nm when a nonpolar solvent (pentane) is replaced by a polar aprotic (CHCl₃) or protic (MeOH) solvent was observed for 3,3-pentamethylenediazirine and 3,3-dimethyldiazirine [16] (Table 2), and this band was assigned to a $\pi \rightarrow \pi^*$ transition in conformity with the principle in [23]. For 3,3-pentamethylenediazirine, on the other hand, a blue shift was observed [17] when hexane was replaced by acetonitrile or methanol (Table 2), and, in conformity with [23], it was concluded that it was due to an n $\rightarrow \pi^*$ transition. Moreover, different λ_{max} values have been presented for the same compound [16, 17] (Table 2). The conclusion from the experimental data [17] seems less correct. If one makes a comparison with cis-azoalkane (Table 2), for which there is no doubt regarding the long-wave $n \rightarrow \pi^*$ transition, in conformity with [23], a greater change in the position of the $n \rightarrow \pi^*$ band should be expected when an aprotic solvent is replaced by a protic solvent than when a nonpolar solvent is replaced by a polar solvent. The instability of 3-alkyldiazirines in an acidic medium [4, 5] does not make it possible to make measurements in an acidic solvent that give the most reliable criterion for the difference in the $\pi \rightarrow \pi^*$ and $n \rightarrow \pi^*$ transitions [23].

In the case of diazirines VIIa-c, f, g, which are stable in acidic media, the positions of the bands at 290-300 nm virtually coincide for esters VIIa, b and acids VIIf, g, do not depend on the polarity of the solvent (Table 2 and Fig. 2), and do not undergo a blue shift even in the case of the addition of HClO4 to a solution of ester VIIa in MeOH, and this constitutes evidence in favor of a $\pi \rightarrow \pi^*$ transition. However, if the results of the calculations in [19, 20], which show that the p_ orbital is delocalized to a considerable extent by mixing with the σ orbitals of the diazirine ring and, consequently, that its interaction with proton-donor solvents will be slight, it may turn out that the criterion in [23] is inapplicable for diazirines.

The mass spectra of diazirine-3,3-dicarboxylic acid derivatives VIIa-c, f are characterized by low intensities of the M^+ peaks and considerable intensity of the ion with m/e 28 (N₂'⁺), and the maximum peaks correspond to the substituents attached to the carbon atom of the diazirine ring and the hydrocarbon fragments with m/e 15 and m/e 29 (Table 1). The low intensities of the peaks of the $(M - N_2)^+$ ion and of diazirine cation D as compared with the corresponding peaks in the mass spectra of diazirines IXa-d (for example, see [24, 25]) are evidently due to destabilization of these ions by the electronegative COOR groups.

$$\begin{array}{c} R \longrightarrow \begin{pmatrix} N \\ N \end{pmatrix} \\ IX a R = R' = H; b R = H, R' = CH_3; \\ C R = CH_3, R' = CI; d R = CH_3; \\ D \\ IX a - d \\ R' = Br \end{array}$$

The same principle as in the case of diazirine IXa and diazomethane, i.e., high intensity of the M⁺ peak of the linear isomer, which is explained by stabilization of the ion due to the removal of an electron from the antibonding orbital of the diazo compound [25], is observed when one compares the mass spectra of diazirine-3,3-dicarboxylic acid esters VIIa, b and the isomeric diazomalonic acid esters [26].

EXPERIMENTAL

The PMR spectra were obtained with a Tesla BS-487C spectrometer (80 MHz) with hexamethyldisiloxane as the internal standard. The IR and UV spectra were obtained with a UR-10 spectrometer and a Specord UV-vis spectrophotometer, respectively. The mass spectra were obtained with an MKh-1303 spectrometer with direct introduction of the samples into the ion source.

Diazirine-3,3-dicarboxylic Acid Methyl Ester N-Methylamide (VIIc). A solution of 0.34 g (11 mmole) of methylamine in 2 ml of absolute methanol was added dropwise with stirring and cooling (to 0°C) to a solution of 1.42 g (9 mmole) of diazirine VIIa [11] in 10 ml of absolute methanol containing traces of sodium methoxide, and the mixture was maintained at 0°C for 48 h. The solvent was evaporated *in vacuo* and the residue was sublimed at 24°C (1 mm) to give 1.30 g of amide VIIc (Table 1). Found: C 38.6; H 4.6; N 26.8%. $C_{s}H_{7}N_{3}O_{3}$. Calculated: C 38.2; H 4.5; N 26.7%.

<u>Diazirine-3,3-dicarboxylic Acid Methyl Ester Potassium Salt (VIId)</u>. A solution of 0.42 g (7.50 mmole) of KOH in 5 ml of absolute methanol was added dropwise with stirring and cooling (to -10° C) to a solution of 1.26 g (7.86 mmole) of diazirine VIIa in 8 ml of absolute methanol, and the mixture was allowed to stand overnight at -10° C. Precipitated salt VIId (1.60 g; Table 1) was removed by filtration, washed with ether, and dried *in* vacuo.

Dipotassium Diazirine-3,3-dicarboxylate (VIIe). Water (10 ml) and a solution of 0.38 g (6.8 mmole) of KOH in 3.5 ml of methanol were added at 10°C to a suspension of 0.81 g (4.7 mmole) of monopotassium salt VIId in 12 ml of methanol, after which the mixture was maintained at 0°C for 12 h, and the crystals of salt VIIe (0.77 g; Table 1) were removed by filtration, washed with absolute methanol, and dried *in vacuo*, Found: C 17.8; N 13.9%. $C_{3}K_{2}N_{2}O_{4}$. Calculated: C 17.5; N 13.6%.

<u>Methyl Diazirine-3,3-dicarboxylic Acid Methyl Ester (VIIf)</u>. A suspension of 0.25 g (1.4 mmole) of salt VIId and 1.0 g of Dowex 50W 12 (H⁺) cation-exchange resin in 5 ml of absolute methanol was stirred at 0°C for 1 h, after which the cation exchange resin was removed, and the solvent was evaporated *in vacuo*. The residue was sublimed at 20° (1 mm) to give 0.15 g of monoacid VIIf (Table 1). Found: C 33.7; H 3.1; N 19.2%. $C_4H_4N_2O_4$. (0.34 g, Table 1). Calculated: C 33.4; H 2.8; N 19.4%.

Diazirine-3,3-dicarboxylic Acid (VIIg). This compound was obtained by the preceding method from 0.60 g (2.9 mmole) of salt VIIe and 3.0 g of cation-exchange resin with exclusion of the sublimation step.

<u>Reaction of Diacid VIIg with Diazoalkanes</u>. An ether solution of the diazoalkane was added dropwise at -10 to -15°C to a solution of 0.13 g (1 mmole) of acid VIIg in 2 ml of ether until a permanent yellow coloration developed. The ether was then removed, and the residue was sublimed *in vacuo* (1 mm) at 20°C (in the case of diazirine VIIb on a surface cooled to -70 to -60°C). Diesters VIIa, b (Table 1), which were identical to genuine samples [11], were obtained.

LITERATURE CITED

1. G. V. Shustov, N. B. Tavakalyan, and R. G. Kostyanovskii (Kostyanovsky), Angew. Chem., 93, 206 (1981).

- 2. M. Regitz, Diazoalkane, Thieme, Stuttgart (1977).
- 3. R. Schulz and O. Schweig, Angew. Chem., Int. Ed., <u>18</u>, 692 (1979).
- 4. E. Schmitz, A. Stark, and C. Hörig, Chem. Ber., <u>98</u>, 2509 (1965).
- 5. E. Schmitz, and C. Hörig, Chem. Ber., <u>100</u>, 2101 (1967).
- 6. G. Lowe and J. Parker, Chem. Commun., No. 18, 1135 (1971).
- 7. R. A. Franich, G. Lowe, and J. Parker, J. Chem. Soc., Perkin Trans. I, No. 16, 2034 (1972).
- 8. E. Voigt and H. Meier, Chem. Ber., <u>108</u>, 3326 (1975).
- 9. T. Livinghouse and R. V. Stevens, J. Am. Chem. Soc., <u>100</u>, 6479 (1978).
- 10. C. G. Overberger and J.-P. Anselme, Tetrahedron Lett., No. 21, 1405 (1963).
- G. V. Shustov, N. B. Tavakalyan, A. P. Pleshkova, and R. G. Kostyanovskii, Khim. Geterotsikl. Soedin., No. 6, 810 (1981).
- 12. H. McNab, Chem. Soc. Rev., <u>17</u>, 345 (1978).
- 13. S. Danishefsky, Acc. Chem. Res., <u>12</u>, 66 (1979).
- 14. L. Dierce and V. Dobyns, J. Am. Chem. Soc., 84, 2651 (1962).
- 15. W. Moffitt, R. B. Woodward, A. Moscowitz, W. Klyne, and C. Djerassi, J. Am. Chem. Soc., 83, 4013 (1961).
- 16. E. Schmitz, Three-Membered Rings with Two Heteroatoms [Russian translation], Mir, Moscow (1970), p. 181.
- M. J. Mirbach, K. C. Liu, M. F. Mirbach, W. R. Cherry, N. J. Turro, and P. S. Engel, J. Am. Chem. Soc., <u>100</u>, 5122 (1978).
- 18. R. Hoffmann, Tetrahedron, 22, 539 (1966).
- M. B. Robin, H. Basch, N. A. Kuebler, K. B. Wiberg, and G. B. Ellison, J. Chem. Phys., <u>51</u>, 45 (1969).
- 20. E. Haselbach, E. Heilbronner, A. Mannschreck, and W. Seitz, Angew. Chem., 82, 879 (1970).
- F. Brogli, W. Elerbach, E. Haselbach, E. Heilbronner, V. Hornung, and D. M. Lemal, Helv. Chim. Acta, <u>56</u>, 1933 (1973).
- M. B. Robin, C. R. Brundle, N. A. Kuebler, G. B. Ellison, and K. B. Wiberg, J. Chem. Phys., <u>57</u>, 1758 (1972).
- 23. J. W. Sidman, Chem. Rev., <u>58</u>, 689 (1958).
- 24. W. H. Graham, J. Am. Chem. Soc., 88, 4677 (1966).
- 25. G. S. Panlett and R. Ettinger, J. Chem. Phys., 39, 825 (1963).
- 26. K. P. Zeller, H. Meier, and E. Muller, Lieb. Ann., 749, 178 (1971).